

# Computer Organisation

**IB Computer Science** 







# **HL Topics 1-7, D1-4**





1: System design



2: Computer Organisation



3: Networks



4: Computational thinking



5: Abstract data structures



6: Resource management



7: Control



D: OOP



#### **HL & SL 2 Overview**

#### **Computer architecture**

- 2.1.1 Outline the architecture of the central processing unit (CPU) and the functions of the arithmetic logic unit (ALU) and the control unit (CU) and the registers within the CPU
- 2.1.2 Describe primary memory. 2 Distinguish between random access memory (RAM) and readonly memory (ROM), and their use in primary memory
- 2.1.3 Explain the use of cache memory
- 2.1.4 Explain the machine instruction cycle

#### **Secondary memory**

2.1.5 Identify the need for persistent storage

Operating systems and application systems

- 2.1.6 Describe the main functions of an operating system
- 2.1.7 Outline the use of a range of application software
- 2.1.8 Identify common features of applications

#### **Binary representation**

- 2.1.9 Define the terms: bit, byte, binary, denary/decimal, hexadecimal
- 2.1.10 Outline the way in which data is represented in the computer

#### Simple logic gates

- 2.1.11 Define the Boolean operators: AND, OR, NOT, NAND, NOR and XOR
- 2.1.12 Construct truth tables using the above operators
- 2.1.13 Construct a logic diagram using AND, OR, NOT, NAND, NOR and XOR gates



1: System design

2: Computer Organisation





3: Networks

4: Computational thinking





5: Abstract data structures

6: Resource management





7: Control

D: OOP







### **Topic 2.1.11**

Define the Boolean operators: AND, OR, NOT, NAND, NOR and XOR



## What is logic?

- Its how a machine will solve problems.
- Machines (at basic level) do not understand semantics like humans – no grey areas.



# The Basic 3 gates

| AND | OR | NOT          |
|-----|----|--------------|
|     |    | <b>—</b> >>- |

| INPUT |   | OUTPUT  |
|-------|---|---------|
| Α     | В | A AND B |
| 0     | 0 | 0       |
| 0     | 1 | 0       |
| 1     | 0 | 0       |
| 1     | 1 | 1       |

| INPUT |   | OUTPUT |
|-------|---|--------|
| Α     | В | A OR B |
| 0     | 0 | 0      |
| 0     | 1 | 1      |
| 1     | 0 | 1      |
| 1     | 1 | 1      |

| INPUT | OUTPUT |
|-------|--------|
| Α     | NOT A  |
| 0     | 1      |
| 1     | 0      |

# The Further 3 gates

| NAND | NOR      | XOR |
|------|----------|-----|
|      | <b>⇒</b> |     |

| INPUT |   | OUTPUT   |
|-------|---|----------|
| Α     | В | A NAND B |
| 0     | 0 | 1        |
| 0     | 1 | 1        |
| 1     | 0 | 1        |
| 1     | 1 | 0        |

| INPUT |   | OUTPUT  |
|-------|---|---------|
| Α     | В | A NOR B |
| 0     | 0 | 1       |
| 0     | 1 | 0       |
| 1     | 0 | 0       |
| 1     | 1 | 0       |

| INPUT |   | ОИТРИТ  |
|-------|---|---------|
| Α     | В | A XOR B |
| 0     | 0 | 0       |
| 0     | 1 | 1       |
| 1     | 0 | 1       |
| 1     | 1 | 0       |

## **Combining gates**



Q = NOT (A AND B)

## Combining gates



Q = NOT (A NOR B)

## Combining gates



Q = C AND (A OR B)



#### In Reality?

Where can we find these gates in reality?



#### Common uses:

| Gate            | Example                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------|
| =D-             | Fire alarm: Smoke (1) AND heat (1)                                                                |
| <b>⇒</b>        | Internal car light: Either door open (1)                                                          |
| ->>-            | Microwave will stop (0) if the door is open (1). Vice versa                                       |
| ⊐>-             | Security system is engaged up until both the correct code and ID are scanned, then it disengages. |
| →-              | Air conditioning: AC will only come on (1) if BOTH windows A and B are closed. (0)                |
| <b>&gt;&gt;</b> | 2 light switches in one corridor                                                                  |