

Computer Organisation

IB Computer Science

HL Topics 1-7, D1-4

1: System design

2: Computer Organisation

3: Networks

4: Computational thinking

5: Abstract data structures

6: Resource management

7: Control

D: OOP

HL & SL 2 Overview

Computer architecture

- 2.1.1 Outline the architecture of the central processing unit (CPU) and the functions of the arithmetic logic unit (ALU) and the control unit (CU) and the registers within the CPU
- 2.1.2 Describe primary memory. 2 Distinguish between random access memory (RAM) and readonly memory (ROM), and their use in primary memory
- 2.1.3 Explain the use of cache memory
- 2.1.4 Explain the machine instruction cycle

Secondary memory

2.1.5 Identify the need for persistent storage

Operating systems and application systems

- 2.1.6 Describe the main functions of an operating system
- 2.1.7 Outline the use of a range of application software
- 2.1.8 Identify common features of applications

Binary representation

- 2.1.9 Define the terms: bit, byte, binary, denary/decimal, hexadecimal
- 2.1.10 Outline the way in which data is represented in the computer

Simple logic gates

- 2.1.11 Define the Boolean operators: AND, OR, NOT, NAND, NOR and XOR
- 2.1.12 Construct truth tables using the above operators
- 2.1.13 Construct a logic diagram using AND, OR, NOT, NAND, NOR and XOR gates

1: System design

2: Computer Organisation

3: Networks

4: Computational thinking

5: Abstract data structures

6: Resource management

7: Control

D: OOP

Topic 2.1.12

Construct **truth tables** using AND, OR, NOT, NAND, NOR and XOR

The Basic 3 gates

AND	OR	NOT
		—

INPUT		OUTPUT	
АВ		A AND B	
0	0	0	
0	1	0	
1	0	0	
1 1		1	

INPUT		OUTPUT		
Α	В	A OR B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

INPUT	OUTPUT
Α	NOT A
0	1
1	0

The Further 3 gates

NAND	NOR	XOR
	⇒	

INPUT		OUTPUT
Α	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

INPUT		OUTPUT		
Α	В	A NOR B		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

INPUT		OUTPUT		
Α	В	A XOR B		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Basic Truth Tables

Multiple gate truth table

A B C A and B not C A.B or C' not (A.B or C') Y

How many combinations do we ned to test in the table?

Α	В	С	A and B	not C	A.B or C'	not (A.B or C')	Y
0	0	0	0	1	1	0	0
0	0	1	0	0	0	1	1
0	1	0	0	1	1	0	0
0	1	1	0	0	0	1	1
1	0	0	0	1	1	0	0
1	0	1	0	0	0	1	1
1	1	0	1	1	1	0	0
1	1	1	1	0	1	0	0

Practice on these...

